Introdução ao Software R e à Análise Econométrica

Agosto de 2018

Alexandre Xavier Ywata Carvalho Geraldo Sandoval Góes

Introdução à Regressão Linear com Dados de Painel

Considere o modelo de regressão tradicional:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \epsilon_i$$

- Nesse modelo, em geral, esse tipo de modelo se aplica a situações nas quais temos dados do tipo cross-section, ou dados de séries temporais
- Com o avanço nos métodos de coleta e armazenamento de informações, cada vez mais estão disponíveis bases de dados de painel
 - Para cada unidade observacional, temos observações para diferentes unidades de tempo
- A possibilidade de observar os dados em diferentes instantes do tempo fornece a possibilidade de diferentes tipo de análise
- A técnicas para tratamento e análise de dados de painel estão amplamente disponíveis
- No R, vamos utilizar nos exemplos bases de dados disponibilizadas pelos próprios pacotes. O principal pacote para dados de painel é o "plm"
- Painel pode ser: balanceado (mesmo número de períodos para cada unidade observacional) ou não-balanceado

Como exemplo, vamos carregar quatro tabelas de dados:

```
#---- carregando os dados
data("EmplUK", package = "plm")
data("Wages", package = "plm")
data("Grunfeld", package = "plm")
data("Produc", package = "plm")
#--- descrição dos dados
?EmplUK
?Wages
?Grunfeld
?Produc
#---- sumário dos dados
summary(EmplUK)
summary(Wages)
summary(Produc)
summary(Grunfeld)
```

	firm ‡	year ‡	sector [‡]	emp [‡]	wage ‡	capitaf	output $^{\diamondsuit}$
1	1	1977	7	5.041000	13.1516	0.5894	95.7072
2	1	1978	7	5.600000	12.3018	0.6318	97.3569
3	1	1979	7	5.015000	12.8395	0.6771	99.6083
4	1	1980	7	4.715000	13.8039	0.6171	100.5501
5	1	1981	7	4.093000	14.2897	0.5076	99.5581
6	1	1982	7	3.166000	14.8681	0.4229	98.6151
7	1	1983	7	2.936000	13.7784	0.3920	100.0301
8	2	1977	7	71.319000	14.7909	16.9363	95.7072
9	2	1978	7	70.642998	14.1036	17.2422	97.3569
10	2	1979	7	70.917999	14.9534	17.5413	99.6083
11	2	1980	7	72.030998	15.4910	17.6574	100.5501
12	2	1981	7	73.689003	16.1969	16.7133	99.5581

An *unbalanced* panel of 140 observations from 1976 to 1984 total number of observations : 1031 observation : firms, country : United Kingdom

Firm - firm index
Year - year
Sector - the sector of activity
Emp - employment
Wage - wages
Capital - capital
Output - output

- A fórmulas para regressão com dados de painel são bastante flexíveis, permitindo a inclusão de lags (defasagens), leads (valores futuros) e diferenças (valor de uma variável menos um valor no período anterior)
- lag(log(emp), 1) indica o valor defasado (no período anterior) do logaritmo natural da variável "emp"
- lag(log(wage), 3) indica o valor defasado de três períodos anteriores, do logaritmo natural da variável "wage"
- diff(log(capital), 2) indica o valor de log(capital) o valor de log(capital) dois períodos anteriores

• Em geral, reescrevemos a equação linear para dados de painel, indexando as unidades observacionais i (i = 1, ..., n) e os períodos de tempo t (t = 1, ..., T)

$$y_{i,t} = \beta_0 + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

- Vamos assumir, por enquanto, que o erro $\epsilon_{i,t}$ possui distribuição normal, com média zero, e variância σ^2_ϵ
- Além disso, vamos assumir por enquanto que $\epsilon_{i,t}$ são erros não correlacionados entre si
- O elemento $y_{i,t}$ corresponde ao valor da variável resposta da unidade i, no período t
- O item $x_{k,i,t}$ corresponde à k-ésima variável explicativa, para a unidade i, no período t
- Na versão da equação acima, os dados para cada unidade observacional estão "empilhados"
- Podemos estimar os parâmetros desconhecidos $\beta_0, \beta_1, \dots, \beta_k$ utilizando um estimador de mínimos quadrados ordinários para os dados empilhados
- A estimação usando os dados empilhados e aplicando um estimador de MQO é conhecida como estimação ou regressão do tipo "pooled"

• Exemplo:

```
Emp.pooled1 <- plm(formula = formula1, data = EmplUK, model = "pooling")
summary(Emp.pooled1)</pre>
```

• Output:

```
> summary(Emp.pooled1)
Pooling Model

Call:
plm(formula = formula1, data = EmplUK, model = "pooling")

Unbalanced Panel: n=140, T=4-6, N=611

Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-0.72500 -0.05210 0.00401 0.05520 0.91900
```

• Exemplo (continuação):

```
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
                0.0609696 0.0599305 1.0173 0.3094
(Intercept)
lag(log(emp), 1) 0.9545302 0.0426280 22.3921 < 2.2e-16 ***
lag(log(emp), 2) 0.0337330 0.0424782 0.7941 0.4274
lag(log(wage), 2) -0.0037779 0.0656215 -0.0576 0.9541
lag(log(wage), 3) -0.0234908 0.0623861 -0.3765 0.7066
diff(log(capital), 2) 0.3174782 0.0409002 7.7623 3.581e-14 ***
diff(log(capital), 3) -0.0111866 0.0325766 -0.3434 0.7314
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 1099.2
Residual Sum of Squares: 9.1562
R-Squared: 0.99167
Adj. R-Squared: 0.99159
F-statistic: 11984.9 on 6 and 604 DF, p-value: < 2.22e-16
```

- Exercício prático. Na regressão abaixo,
 - Adicione um lag de ordem 3 para o nível de emprego (emp), e um lag de ordem 1 para a variável de salários (wage)
 - Rode um modelo de painel com estimador do tipo "pooled"
 - Verifique as variáveis lag adicionadas são estatisticamente significantes.

```
formula1 <- log(emp) \sim lag(log(emp), 1) + lag(log(emp), 2) + lag(log(wage), 2) + lag(log(wage), 3) + diff(log(capital), 2) + diff(log(capital), 3)
```

```
Emp.pooled1 <- plm(formula = formula1, data = EmplUK, model = "pooling")
summary(Emp.pooled1)</pre>
```

- O problema com regressão do tipo pooled é que perdermos a oportunidade de tentar identificar diferenças intrínsecas entre as unidades observacionais
- Essas diferenças não necessariamente estão contabilizadas nas variáveis explicativas $x_{1,i,t}$, $x_{2,i,t}$, ..., $x_{k,i,t}$ (variáveis observáveis)
- Para contornar isso, nós trabalhamos então com a inclusão de variáveis dummy específicas para cada unidade observacional
- Por exemplo, em um painel de municípios, observados em diferentes anos, nós estamos tentando identificar os efeitos específicos das características de cada município individualmente
- Nesse caso, a regressão para dados de painel é reescrita na forma:

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

- O parâmetro α_i corresponde a o efeito idiossincrático para a unidade observacional i
 - A ideia é que o termo contabilize por características da unidade i (municípios, por exemplo), que não se alteram ao longo dos anos, e que não sejam contabilizadam pelas variáveis observáveis $x_{1,i,t}, x_{2,i,t}, \ldots, x_{k,i,t}$

Resultado dos efeitos do FNE sobre o crescimento médio anual do PIB per capita no nível municipal – método painel de efeitos fixos

	Dalmal of citae	Variável dependente = taxa de crescimento anual média do PIB per capita					
Método de estimação	Painel efeitos fixos	Painel efeitos fixos		Painel efeitos fixos	Painel efeitos fixos		
	(1)	(2)		(3)	(4)		
Alta renda_Proporção do FNE início do período (1º ano) em relação ao PIB do início de cada período	0.9982**	0.8501**	Alta renda_Proporção do FNE início do período (1º + 2º ano) em relação ao PIB do início de cada período	-0.0122	-0.0380*		
	(0.0157)	(0.0208)		(0.5977)	(0.0665)		
Dinâmica_Proporção do FNE início do período (1º ano) em relação ao PIB do início de cada período	0.1407***	0.1225***	Dinâmica_Proporção do FNE início do período (1º + 2º ano) em relação ao PIB do início de cada período	0.1282***	0.1066***		
	(0.0006)	(0.0010)		(0.0000)	(0.0000)		
Baixa renda_Proporção do FNE início do período (1º ano) em relação ao PIB do início de cada período	0.4528***	0.2129***	Baixa renda_Proporção do FNE início do período (1º + 2º ano) em relação ao PIB do início de cada período	0.0934***	0.0273		
	(0.0000)	(0.001)		(0.0002)	(0.2259)		
Estagnada_Proporção do FNE início do período (1º ano) em relação ao PIB do início de cada período	0.1508**	-0.0191	Estagnada_Proporção do FNE início do período (1º + 2º ano) em relação ao PIB do início de cada período	0.1322***	0.0639***		
	(0.0411)	0.7733		(0.0000)	(0.0099)		
Ln (PIB per capita no início de cada período)	-0.1693***	-0.2944***	Ln (PIB <i>per capita</i> no início de cada período)	-0.1681***	-0.2936***		
	(0.0000)	(0.0000)		(0.0000)	(0.0000)		
Ln (anos médios de escolaridade no início de cada período, Rais)	0.0670***	-0.0103**	Ln (anos médios de escolaridade no início de cada período, Rais)	0.0653***	-0.01090***		
	(0.0000)	(0.0138)		(0.0000)	(0.0091)		
Ln (densidade populacional no início de cada período)	0.0926***	-0.1280***	Ln (densidade populacional no início de cada período)	0.0886***	-0.1280***		
	(0.0000)	(0.0000)		(0.0000)	(0.0000)		
Efeitos fixos	Sim	Sim	Efeitos fixos	Sim	Sim		
Dummy de tempo	Não	Sim	Dummy de tempo	Não	Sim		
Número de observações (municípios)	5.946	5.946		5.946	5.946		
R2 ajustado	0.1739	0.3368		0.1779	0.3403		

• Além dos efeitos individuais de cada unidade observacional, podemos também incluir efeitos específicos δ_t dos períodos de tempo:

$$y_{i,t} = \alpha_i + \delta_t + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

- Quando o número de unidades observacionais n não é muito grande, podemos estimar os efeitos α_i simplesmente adicionando dummies à regressão, da mesma forma que fizemos nas aulas anteriores
- No entanto, em geral, o número n é da ordem de milhares (exemplo, n = 5564 municípios), e teríamos que incluir 5564 dummies (ou 5563) na regressão
- Em estudos longitudinais de trabalhadores, por exemplo, o valor n pode chegar a dezenas ou centenas de milhares
- Computacionalmente, temos então um problema prático de estimar os coeficientes α_i , quando n é alto
- Uma parcela considerável dos avanços na análise de regressão com dados de painel corresponde justamente a técnicas para estimarmos os coeficientes α_i
- Iremos agora discutir uma boa parte desses procedimentos

Vamos considerar o caso mais geral, conforme regressão abaixo (os efeitos fixos de período δ_t podem estar representados por algumas das variáveis explicativas):

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

- As variáveis explicativas podem conter também defasagens, diferenças, vários tipos de variáveis dummy, etc.
- A literatura divide a estimação dos coeficientes α_i , de acordo com duas situações:
 - Estimadores de efeitos aleatórios para α_i nesse caso, assume-se que os coeficientes α_i são termos aleatórios, com variância σ_α^2 , e esses termos não são correlacionados com os erros $\epsilon_{i,t}$
 - Estimadores de efeitos fixos para α_i utilizamos esses estimadores quando a hipótese de que os coeficientes α_i são não correlacionados com os erros $\epsilon_{i,t}$ não é uma hipótese válida
- Dentro de cada um desses dois grandes grupos de estimadores, há uma série de variações
- Na prática, os estimadores de efeitos fixos são mais comuns, por conta da tendência de rejeitarmos a hipótese nula de que os coeficientes α_i são não correlacionados com os erros $\epsilon_{i,t}$

• No caso dos estimadores de efeitos fixos, temos então que estimar diretamente os coeficientes α_i na equação abaixo:

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$
 (A)

 Para isso, vamos inicialmente aplicar a soma para todas as observações em cada unidade i, e dividir por n

$$\frac{1}{n} \sum_{t=1}^{T} y_{i,t} = \frac{1}{n} \sum_{t=1}^{n} \left[\alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t} \right]$$

$$\bar{y}_{i,..} = \alpha_i + \beta_1 \bar{x}_{1,i,..} + \beta_2 \bar{x}_{2,i,..} + \dots + \beta_k \bar{x}_{k,i,..} + \bar{\epsilon}_{i,..} \tag{B}$$

Subtraindo (A) – (B), obtemos a equação:

$$(y_{i,t} - \bar{y}_{i,.}) = \beta_1(x_{1,i,t} - \bar{x}_{1,i,.}) + \dots + \beta_k(x_{k,i,t} - \bar{x}_{k,i,.}) + (\epsilon_{i,t} - \bar{\epsilon}_{i,.})$$

Ou alternativamente

$$(y_{i,t} - \bar{y}_{i,.}) = \beta_1(x_{1,i,t} - \bar{x}_{1,i,.}) + \dots + \beta_k(x_{k,i,t} - \bar{x}_{k,i,.}) + \epsilon_{i,t}^*$$
 (C)

• Com $\epsilon_{i,t}^* = (\epsilon_{i,t} - \bar{\epsilon}_{i,\cdot})$

Considere então a fórmula

$$(y_{i,t} - \bar{y}_{i,\cdot}) = \beta_1(x_{1,i,t} - \bar{x}_{1,i,\cdot}) + \dots + \beta_k(x_{k,i,t} - \bar{x}_{k,i,\cdot}) + \epsilon_{i,t}^*$$

- Podemos estimar os parâmetros β_1, \dots, β_k através da regressão da variável $(y_{i,t} \bar{y}_{i,\cdot})$, versus as variáveis explicativas $(x_{1,i,t} \bar{x}_{1,i,\cdot})$, $(x_{2,i,t} \bar{x}_{2,i,\cdot})$, ..., $(x_{k,i,t} \bar{x}_{k,i,\cdot})$
- Um cuidado adicional dever tomado para o fato de o erro $\epsilon_{i,t}^* = (\epsilon_{i,t} \bar{\epsilon}_{i,.})$ não ser mais não-correlacionado. Devido ao termo $\bar{\epsilon}_{i,.}$, aparecendo em todos os períodos para cada unidade i, o termo $\epsilon_{i,t}^*$ apresenta uma correlação com $\epsilon_{i,s}^*$, com $t \neq s$
- Vamos nos preocupado com os resíduos correlacionados mais adiante
- Um primeiro fato importante da equação na fórmula (C) é que, no estimador de efeitos fixos, não podemos incluir entre as variáveis explicativas uma variável que seja constante para todos os períodos de tempo, para todos as unidades i
- De fato, se tivermos $x_{1,i,t} = x_{1,i}$, para toda unidade i, então $\bar{x}_{1,i,.} = x_{1,i}$; portanto, $(x_{1,i,t} \bar{x}_{1,i,.}) = x_{1,i} x_{1,i} = 0$, para toda unidade i. Na nossa matriz X de variáveis explicativas vamos ter uma coluna somente com zeros, e não será possível estimar os coeficientes da regressão
- Portanto, quando estivermos usando estimadores de efeitos fixos, NÃO podemos incluir variáveis explicativas que não variem no tempo, para pelo menos algumas das unidades i

• Considere novamente a equação com os efeitos fixos α_i :

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

- Em princípio, o efeito fixo α_i serve justamente para capturar, em um único coeficiente, todas as especificidades da unidade (por exemplo, município) i
- Se uma determinada variável $x_{1,i,t}$ é constante ao longo de todos os períodos, não precisamos incluída na regressão. O seu efeito em princípio está sendo capturado pela constante α_i
- Considere então uma regressão na qual as unidades observacionais i sejam municípios brasileiros, e os períodos t sejam anos consecutivos
 - Nesse caso, é tentador incluir na regressão, variáveis explicativas com base no Censo 2010, e repetir esses valores para os demais anos
 - O problema dessa estratégia é justamente o fato de que, quando repetimos os valores do Censo 2010 para os demais anos, as variáveis resultantes não variam ao longo dos períodos
 - Portanto, não podemos utilizar estimadores de efeitos fixos nesses casos
 - Alternativas: usar fontes de dados que possuem informações anuais: Censo Escolar, DataSus, transferências de renda, RAIS etc.

 O estimador de efeitos fixos baseado na fórmula abaixo é conhecido como estimador "within" ou estimador "demeaned"

$$(y_{i,t} - \bar{y}_{i,.}) = \beta_1(x_{1,i,t} - \bar{x}_{1,i,.}) + \dots + \beta_k(x_{k,i,t} - \bar{x}_{k,i,.}) + \epsilon_{i,t}^*$$
 (C)

- Esse é um estimador muito utilizado na prática
- Com base nas estimativas $\hat{\beta}_1, \dots, \hat{\beta}_k$ para os parâmetros β_1, \dots, β_k , podemos empregar a equação (B), para encontrar estimativas para os efeitos fixos α_i

$$\hat{\alpha}_{i} = \bar{y}_{i,.} - \left[\beta_{1} \bar{x}_{1,i,.} + \beta_{2} \bar{x}_{2,i,.} + \dots + \beta_{k} \bar{x}_{k,i,.} \right]$$

 Em muitos casos, é útil analisar esses efeitos fixos, utilizando, por exemplo, análises gráficas

 Abaixo sintaxe em R para estimar uma regressão de painel com efeitos fixos, via estimador within

```
Oneway (individual) effect Within Model
Call:
```

plm(formula = formula1, data = EmplUK, model = "within")

Unbalanced Panel: n=140, T=4-6, N=611

Residuals:

Min. 1st Qu. Median 3rd Qu. Max. -0.5870 -0.0462 0.0035 0.0463 0.8170

Coefficients:

```
Estimate Std. Error t-value Pr(>|t|)
```

lag(log(emp), 1) 0.661436 0.045003 14.6977 < 2.2e-16 *** lag(log(emp), 2) 0.014835 0.054911 0.2702 0.7871501 lag(log(wage), 2) -0.024417 0.084921 -0.2875 0.7738394 lag(log(wage), 3) 0.092591 0.080758 1.1465 0.2521638 diff(log(capital), 2) 0.192682 0.041313 4.6640 4.059e-06 *** diff(log(capital), 3) 0.124067 0.036670 3.3833 0.0007767 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 18.394

Residual Sum of Squares: 6.0765 R-Squared: 0.66965

Adj. R-Squared. 0.56663

F-statistic: 157.097 on 6 and 465 DF, p-value: < 2.22e-16

R² da regressão (C)

- Exercício prático. Na regressão abaixo,
 - Adicione um lag de ordem 3 para o nível de emprego (emp), e um lag de ordem 1 para a variável de salários (wage)
 - Rode um modelo de painel com estimador do tipo "within"
 - Verifique as variáveis lag adicionadas são estatisticamente significantes.

```
formula1 <- log(emp) ~ lag(log(emp), 1) + lag(log(emp), 2) + lag(log(wage), 2) + lag(log(wage), 3) + diff(log(capital), 2) + diff(log(capital), 3)
```

• Considere novamente o problema de estimar os coeficientes $\beta_1, ..., \beta_k$ na equação abaixo:

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$
 (A)

Considere a primeira defasagem da equação (A) acima

$$y_{i,t-1} = \alpha_i + \beta_1 x_{1,i,t-1} + \beta_2 x_{2,i,t-1} + \dots + \beta_k x_{k,i,t-1} + \epsilon_{i,t-1}$$
(A1)

• Subtraindo (A) – (A1), obtemos a equação:

$$(y_{i,t} - y_{i,t-1}) = (\alpha_i - \alpha_i) + \beta_1(x_{1,i,t} - x_{1,i,t-1}) + \dots + \beta_k(x_{k,i,t} - x_{k,i,t-1}) + (\epsilon_{i,t} - \epsilon_{i,t-1})$$

Resultando:

$$(y_{i,t}-y_{i,t-1}) = \beta_1(x_{1,i,t}-x_{1,i,t-1}) + \dots + \beta_k(x_{k,i,t}-x_{k,i,t-1}) + \tilde{\epsilon}_{i,t}$$

- Com o novo termo de erro $\epsilon_{i,t}^*=(\epsilon_{i,t}-\epsilon_{i,t-1})$. Esse termo também apresenta correlação, mas nós não iremos detalhar isso agora
- Note que a regressão acima está em primeiras diferenças tanto para as variáveis explicativas como para a variável resposta

$$\Delta y_{i,t} = \beta_1 \Delta x_{1,i,t} + \beta_2 \Delta x_{2,i,t} + \dots + \beta_k \Delta x_{k,i,t} + \tilde{\epsilon}_{i,t}$$
 (D)

 O estimador com base na regressão abaixo é conhecido como estimador de efeitos fixos, do tipo primeiras diferenças ("first differences")

$$\Delta y_{i,t} = \beta_1 \Delta x_{1,i,t} + \beta_2 \Delta x_{2,i,t} + \dots + \beta_k \Delta x_{k,i,t} + \tilde{\epsilon}_{i,t}$$
 (D)

- Diferentemente do estimador do tipo "within", no caso do estimador de primeiras diferenças não é possível obter os coeficientes $\hat{\alpha}_i$
- Abaixo a sintaxe para estimar no R

#---- regressão com estimador de efeitos fixos, do tipo first diferences

Emp.fd1 <- plm(formul = formula1, data = EmplUK, model = "fd")
summary(Emp.fd1)</pre>

fixef(Emp.fd1) #--- extraindo os efeitos fixos de cada unidade (vai dar erro!)

```
Oneway (individual) effect First-Difference Model
```

```
Call:
plm(formula = formula1, data = EmplUK, model = "fd")
Unbalanced Panel: n=140, T=4-6. N=611
Observations used in estimation: 471
                                                    Número de observações utilizadas
Residuals:
  Min. 1st Qu. Median 3rd Qu. Max.
-0.92100 -0.05530 0.00815 0.05450 0.91800
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
               (intercept)
lag(log(emp), 1) 0.1329223 0.0449745 2.9555 0.003280 **
lag(log(emp), 2) 0.1117792 0.0572729 1.9517 0.051576.
lag(log(wage), 2) 0.0606044 0.0884320 0.6853 0.493483
lag(log(wage), 3) -0.0676549 0.0861997 -0.7849 0.432935
diff(log(capital), 2) 0.1158038 0.0364845 3.1741 0.001603 **
diff(log(capital), 3) 0.1714872 0.0370334 4.6306 4.740e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                           R<sup>2</sup> da regressão (D)
Total Sum of Squares: 10.637
Residual Sum of Squares: 9.0427
R-Squared:
            0.14991
Adj. R Squared: 0.13892
F-statistic: 13.6375 on 6 and 464 DF, p-value: 2.7803e-14
```

- Exercício prático. Na regressão abaixo,
 - Adicione um lag de ordem 3 para o nível de emprego (emp), e um lag de ordem 1 para a variável de salários (wage)
 - Rode um modelo de painel com estimador do tipo "first differences"
 - Verifique as variáveis lag adicionadas são estatisticamente significantes.

```
formula1 <- log(emp) ~ lag(log(emp), 1) + lag(log(emp), 2) + lag(log(wage), 2) + lag(log(wage), 3) + diff(log(capital), 2) + diff(log(capital), 3)
```

• Voltemos novamente ao problema de estimar os coeficientes $\beta_1, ..., \beta_k$ na equação abaixo:

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$
 (A)

- Vamos agora derivar o terceiro tipo de estimador de efeitos fixos, conhecido como estimador "between"
- Para isso, lembrando a equação (B) acima:

$$\bar{y}_{i,.} = \alpha_i + \beta_1 \bar{x}_{1,i,.} + \beta_2 \bar{x}_{2,i,.} + \dots + \beta_k \bar{x}_{k,i,.} + \bar{\epsilon}_{i,.}$$
 (B)

• Podemos reagrupar os termos, inserindo um intercepto α , obtendo

$$\bar{y}_{i,.} = \alpha + \beta_1 \bar{x}_{1,i,.} + \beta_2 \bar{x}_{2,i,.} + \dots + \beta_k \bar{x}_{k,i,.} + [\alpha_i - \alpha + \bar{\epsilon}_{i,.}]$$

Ou, reescrevendo,

$$\bar{y}_{i,.} = \alpha + \beta_1 \bar{x}_{1,i,.} + \beta_2 \bar{x}_{2,i,.} + \dots + \beta_k \bar{x}_{k,i,.} + \bar{\epsilon}_{i,.}^*$$
 (B1)

- Onde $\bar{\epsilon}_{i,.}^* = [\alpha_i \alpha + \bar{\epsilon}_{i,.}]$ é um termo de erro nessa nova equação. Esse termo também é correlacionado entre si, mas pode ser ajustado devidamente na estimação
- O estimador "between" corresponde simplesmente a uma regressão cross-section das médias da variável predita versus as médias das variáveis explicativas

- O estimador "between" corresponde simplesmente a uma regressão cross-section das médias da variável predita versus as médias das variáveis explicativas
- Da mesma forma que no estimador de primeiras diferenças, não é possível obter diretamente estimativas para os efeitos fixos α_i
- O estimador do tipo "between" não apresenta vantagens em relação aos demais estimadores
- Sintaxe no R:

#---- regressão com estimador de efeitos fixos, do tipo between

Emp.between1 <- plm(formul = formula1, data = EmplUK, model = "between")
summary(Emp.between1)</pre>

fixef(Emp.between1) #--- extraindo os efeitos fixos de cada unidade (vai dar erro!)

```
Oneway (individual) effect Between Model
```

```
Call:
plm(formula = formula1, data = EmplUK, model = "between")
Unbalanced Panel: n=140, T=4-6. N=611
Observations used in estimation: 140
                                                      Número de observações utilizadas
Residuals:
                                                      (cross-section)
  Min. 1st Qu. Median 3rd Qu.
                                    Max.
-0.080100 -0.011600 0.000133 0.013700 0.072600
Coefficients:
            Estimate Std. Error t-value Pr(>|t|)
                0.066345 0.029245 2.2686 0.0249 *
(Intercept)
lag(log(emp), 1) 1.931319 0.044720 43.1867 < 2.2e-16 ***
lag(log(emp), 2) -0.937184 0.044536 -21.0431 < 2.2e-16 ***
lag(log(wage), 2) -0.061661 0.070879 -0.8699 0.3859
lag(log(wage), 3) 0.042590 0.067088 0.6348 0.5266
diff(log(capital), 2) 0.506499 0.058375 8.6767 1.259e-14 ***
diff(log(capital), 3) -0.306741  0.037957 -8.0813 3.445e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                                                              R<sup>2</sup> da regressão cross-section (B1)
Total Sum of Squares: 253.01
Residual Sum of Squares: 0.085322
R-Squared:
             0.99966
Adj. R Squared: 0.99965
F-statistic: 65710.6 on 6 and 133 DF, p-value: < 2.22e-16
```

Estimadores de Efeitos Aleatórios

• Voltemos novamente ao problema de estimar os coeficientes $\beta_1, ..., \beta_k$ na equação abaixo:

$$y_{i,t} = \alpha_i + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$
 (A)

- Uma das grandes desvantagens de utilizarmos regressão de painel com efeitos fixos é que não podemos incluir no lado direito da equação variáveis explicativas que não variam no tempo
- Quando o termos α_i não são correlacionados com os erros $\epsilon_{i,t}$, nós podemos empregar estimadores de efeitos aleatórios
- Esses estimadores permitem a inclusão de variáveis explicativas que não variem no tempo, o que pode ser muito útil em várias situações
- Vamos reescrever a equação (A) na forma

$$y_{i,t} = \alpha + (\alpha_i - \alpha) + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \epsilon_{i,t}$$

Simplificando, temos:

$$y_{i,t} = \alpha + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \alpha_i^* + \epsilon_{i,t}$$
 (E)

• Para o estimador de efeitos aleatórios, o termo $\alpha_i^* = (\alpha_i - \alpha)$ é considerado uma variável aleatória, com média 0 e variância σ_α^2

Estimadores de Efeitos Aleatórios

• Para o estimador de efeitos aleatórios, o termo α_i^* é considerado uma variável aleatória, com média 0 e variância σ_{α}^2

$$y_{i,t} = \alpha + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \alpha_i^* + \epsilon_{i,t}$$

• No caso dos estimadores de efeitos aleatórios, podemos considerar um erro composto $v_{i,t}=\alpha_i^*+\epsilon_{i,t}$, resultando

$$y_{i,t} = \alpha + \beta_1 x_{1,i,t} + \beta_2 x_{2,i,t} + \dots + \beta_k x_{k,i,t} + \nu_{i,t}$$
 (E1)

- O estimador de efeitos aleatórios nada mais é do que um estimador de mínimos quadrados, com base na equação (E1), levando em consideração a estrutura de variância dos erros, devido à composição $v_{i,t}=\alpha_i^*+\epsilon_{i,t}$
- Para isso, rodamos um estimador de mínimos quadrados ordinários na equação

$$(y_{i,t} - \hat{\lambda} \bar{y}_{i,\cdot}) = \alpha^* + \beta_1 (x_{1,i,t} - \hat{\lambda} \bar{x}_{1,i,\cdot}) + \dots + \beta_k (x_{k,i,t} - \hat{\lambda} \bar{x}_{k,i,\cdot}) + \nu_{i,t}^*$$

Onde:

$$\hat{\lambda} = 1 - \frac{\sigma_{\epsilon}}{\sqrt{\sigma_{\epsilon}^2 + T\sigma_{\alpha}^2}}$$

Estimadores de Efeitos Aleatórios

Para isso, rodamos um estimador de mínimos quadrados ordinários na equação

$$(y_{i,t} - \hat{\lambda}\bar{y}_{i,\cdot}) = \alpha^* + \beta_1(x_{1,i,t} - \hat{\lambda}\bar{x}_{1,i,\cdot}) + \dots + \beta_k(x_{k,i,t} - \hat{\lambda}\bar{x}_{k,i,\cdot}) + \nu_{i,t}^*$$

Onde:

$$\hat{\lambda} = 1 - \frac{\sigma_{\epsilon}}{\sqrt{\sigma_{\epsilon}^2 + T\sigma_{\alpha}^2}}$$

- Outros tipos de estimadores de efeitos aleatórios estão disponíveis, e todos visam a separar a variabilidade dos termos idiossincráticos (σ_{α}^2) da variabilidade dos resíduos (σ_{ϵ}^2)
- Em alguns casos, dependendo da base de dados, é possível que haja problemas numéricos, incorrendo em valores negativos para alguns dos dois termos (σ_{α}^2 ou σ_{ϵ}^2)
- Resta agora estudarmos como identificar se devemos utilizar estimador de efeitos fixos ou estimador de efeitos aleatórios
- O teste comumente empregado é o teste de Hausman

> phtest(fixed, random)

Efeitos Fixos versus Efeitos Aleatórios

 O teste comumente empregado é o teste de Hausman, para diferenciar entre efeitos fixos e efeitos aleatórios

> phtest(fixed, random)

- A diferença básica entre esses dois tipos de modelos é que, para os efeitos aleatórios, assumimos que não existe correlação entre os termos idiossincráticos α_i e os resíduos $\epsilon_{i,t}$; para o estimador de efeitos fixos, podemos ter ou não correlação entre α_i e $\epsilon_{i,t}$
- Podemos testar se existe ou não correlação de forma indireta
- Rodamos o estimador de efeitos fixos (por exemplo, within) e rodamos o estimador de efeitos aleatórios
- Testamos então a diferença, estatisticamente, entre os parâmetros estimados pelos dois estimadores
- Se tivéssemos apenas um coeficiente δ , a estatística de Hausman teria a forma:

$$T = \frac{\hat{\delta}_{FE} - \hat{\delta}_{RE}}{\sqrt{\hat{Var}(\hat{\delta}_{FE}) - \hat{Var}(\hat{\delta}_{RE})}}$$

Efeitos Fixos versus Efeitos Aleatórios

- Na prática, temos mais de coeficientes para testarmos (coeficientes do modelo de regressão de painel)
- Nesse caso, a estatística de Hausman tem uma expressão mais complexa, mas a ideia é a mesma
- A hipótese nula do teste é que os coeficientes são conjuntamente diferentes do modelo de efeitos fixos e de efeitos aleatórios
- Dado que o método de efeitos fixos é mais flexível, caso rejeitemos a hipótese nula, rejeitamos indiretamente o modelo de efeitos aleatórios
- Caso rejeitemos a hipótese nula, mantemos o modelo de efeitos fixos; caso contrário, podemos usar o modelo de efeitos aleatórios
- Além disso, é necessário testar se de fato precisamos de um modelo com termos idiossincráticos α_i
- Para isso, temos um teste específico, para o qual a hipótese nula é H_0 : $\sigma_{\alpha}^2=0$; caso rejeitemos a hipótese nula, justifica-se o uso de modelos de efeitos fixos ou aleatórios; caso contrário, podemos usar o pooled OLS

pFtest(fixed1, pooled1)

- Diante das várias possibilidades de tipos de estimadores, é importante termos uma sequência de procedimentos para empregar na prática
- Procedimento geral para estimação de modelos de painel:
 - Estime um modelo de efeitos fixos, utilizando estimador within ou de primeiras diferenças
 - Estime um modelo de efeitos aleatórios
 - Use o teste de Hausman; se as estimativas dos coeficientes $\beta_1, ..., \beta_k$ forem significantemente diferentes, o estimador de efeitos fixos será mais apropriado
 - Caso contrário, teste a hipótese nula de que a variância σ_{α}^2 entre os termos α_i é igual a zero $(H_0: \sigma_{\alpha}^2 = 0)$
 - Se rejeitamos a hipótese nula H_0 : $\sigma_{\alpha}^2=0$, então o estimador de efeitos aleatórios serão o mais apropriado
 - Caso contrário, podemos usar o Pooled MQO

Exercício – para entregar em duas semanas

Com base no arquivo "Analise_de_Regressao_com_Dados_Painel.R", considere o modelo com dados de painel, com a fórmula:

formula <- $log(gsp) \sim log(water) + log(hwy) + log(util) + log(pc) + lag(log(gsp), 1)$ + lag(log(emp), 1) + log(pcap)

Questão 1: rode um modelo de efeitos fixos com estimador 'within'

Questão 2: rode um modelo de efeitos aleatórios, usando o default do plm

Questão 3: compare o estimador de efeitos fixos ao estimador de efeitos aleatórios, usando um teste de Hausman

Questão 4: rode um modelo sem os termos idiossincráticos

Questão 5: teste a necessidade dos termos idiossincráticos, usando teste de hipótese

Questão 6: qual modelo você usaria ao final dos procedimentos?